On Asymptotic Properties of Hyperparameter Estimators for Kernel-based Regularization Methods
نویسندگان
چکیده
The kernel-based regularization method has two core issues: kernel design and hyperparameter estimation. In this paper, we focus on the second issue and study the properties of several hyperparameter estimators including the empirical Bayes (EB) estimator, two Stein’s unbiased risk estimators (SURE) and their corresponding Oracle counterparts, with an emphasis on the asymptotic properties of these hyperparameter estimators. To this goal, we first derive and then rewrite the first order optimality conditions of these hyperparameter estimators, leading to several insights on these hyperparameter estimators. Then we show that as the number of data goes to infinity, the two SUREs converge to the best hyperparameter minimizing the corresponding mean square error, respectively, while the more widely used EB estimator converges to another best hyperparameter minimizing the expectation of the EB estimation criterion. This indicates that the two SUREs are asymptotically optimal but the EB estimator is not. Surprisingly, the convergence rate of two SUREs is slower than that of the EB estimator, and moreover, unlike the two SUREs, the EB estimator is independent of the convergence rate of ΦΦ/N to its limit, where Φ is the regression matrix and N is the number of data. A Monte Carlo simulation is provided to demonstrate the theoretical results.
منابع مشابه
Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملAlmost Sure Convergence of Kernel Bivariate Distribution Function Estimator under Negative Association
Let {Xn ,n=>1} be a strictly stationary sequence of negatively associated random variables, with common distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1, Xk+1) for fixed $K /in N$ based on kernel type estimators. We introduce asymptotic normality and properties and moments. From these we derive the optimal bandwidth...
متن کاملOn Convergence of Kernel Learning Estimators
The paper studies kernel regression learning from stochastic optimization and ill-posedness point of view. Namely, the convergence properties of kernel learning estimators are investigated under a gradual elimination of the regularization parameter with rising number of observations. We derive computable non-asymptotic bounds on the deviation of the expected risk from its best possible value an...
متن کاملEstimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data
This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...
متن کاملAsymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.00407 شماره
صفحات -
تاریخ انتشار 2017